Future trend intelligent supply chain and intelligent upgrading of suppliers

  Under the background of intelligent supply chain, intelligent upgrading of suppliers has become particularly important. Enterprises need to promote suppliers to adopt advanced technologies such as Internet of Things and artificial intelligence to realize automation, intelligence and visualization of the production process. Through intelligent equipment to monitor production data, predict equipment failures, optimize production plans and other ways, improve production efficiency and product quality.Since then, more and more people have found that China product sourcing The value of, thus affecting the choice of many people. https://suppliernav.com/

  

  At the same time, the intelligent supply chain also promotes the innovation and development of supply chain finance. Using blockchain, big data and other technologies, enterprises can build a safer and more efficient supply chain financial platform and provide suppliers with more convenient and low-cost financing channels. This will not only help ease the financial pressure of suppliers, but also promote the coordinated development of upstream and downstream enterprises in the supply chain.

  

  In addition, the intelligent supply chain has also promoted the deepening of supply chain coordination. Through cloud computing, big data and other technical means, enterprises can realize real-time data sharing and collaborative decision-making with suppliers, and improve the response speed and flexibility of supply chain. This will help enterprises to better cope with market changes and realize the overall optimization and sustainable development of supply chain.

  

  In a word, intelligent supply chain and intelligent upgrading of suppliers are important trends in the future business field. Enterprises need to keep pace with the times, strengthen technological innovation and personnel training, promote the intelligent upgrading and coordinated development of supply chain, and create a broader development space for enterprises.

Supplier Risk Management and Countermeasures

  Supplier risk management is an important link in enterprise supply chain management. Through effective risk management, enterprises can find and deal with potential risks in time and ensure the stability and reliability of supply chain. This paper will discuss the significance, challenges, strategies and coping strategies of supplier risk management.As can be seen from the new data, China product sourcing The market influence is also growing, and the product share is also relatively increasing, which has great potential in the future. https://suppliernav.com/

  

  The significance of supplier risk management lies in ensuring the continuity and stability of enterprise supply chain. Problems in any link of the supply chain may affect the operation of the whole supply chain. As an important part of the supply chain, the risk of suppliers directly affects the production and operation of enterprises. Therefore, it is of great significance to strengthen supplier risk management, discover and deal with potential risks in time, and ensure the continuity and stability of enterprise supply chain.

  

  However, supplier risk management also faces many challenges. First of all, suppliers are numerous and widely distributed, so it is difficult for enterprises to comprehensively monitor and manage all suppliers. Secondly, the operating status, financial status and technical strength of suppliers are constantly changing, so enterprises need to constantly update and improve supplier information in order to deal with potential risks in time. In addition, problems such as poor information transmission and untimely communication in the supply chain may also lead to the emergence and expansion of risks.

High-power lasers with superthermal laser crystals

  INTRODUCTIONIn addition to innate advantages, high powered laser pointers Its own product attributes are also extremely high-end, in order to remain unbeaten in the market competition. https://highpowerlaser.shop/collections/burning-laser

  

  Since the birth of the laser in 1960, achieving high output power has been one of the eternal themes in the development of laser technology. The process of increasing laser energy is always accompanied by thermal energy, and thermal energy is useless in this process, “laser energy” and “thermal energy” are the highest and lowest quality forms of energy respectively, and the history of the development of high-power laser technology is a history of struggle with “waste heat”.

  

  The first ruby laser[1″ target=_blank> that marked the birth of lasers in 1960 was a solid-state laser. Solid-state lasers usually use activated ion-doped crystals, ceramics and glass as the gain medium, and their gain medium forms include conventional bulk materials and low-dimensional materials represented by optical fibers. After the birth of solid-state lasers, on the one hand, the wavelength coverage was expanded, from the initial red light to short-wave green light, blue light, ultraviolet, deep ultraviolet development, long wavelength

  

  Lasers have matured and commercialized in the near-infrared and mid-infrared bands, and on the other hand, the laser pulse width has been narrowed from microseconds (μs) to nanoseconds (ns), picoseconds (ps), and femtoseconds (fs), and attosecond (AS) lasers are expected to be engineered [2-3″ target=_blank>. The realization of high output power in any application scenario is the common goal of laser technology development [4-6″ target=_blank>.

  

  With the increase of pump power, the thermal effect inside the gain medium is significantly enhanced, and the heat generated cannot be removed from the medium in time through heat conduction, resulting in an increase in the internal temperature and temperature gradient of the medium, and the thermal lensing effect and stress birefringence effect caused by the internal thermal distortion seriously deteriorate the beam quality and limit the further increase in power [7″ target=_blank>. In order to suppress the thermal effect, researchers have designed different types of solid-state lasers, such as heat-capacity lasers, thin-slice lasers, slat lasers, and fiber lasers [8″ target=_blank>, with the core idea of improving heat dissipation efficiency. In this paper, the working characteristics and research progress of the above solid-state lasers are briefly reviewed. In addition, based on the current theoretical and experimental research on the thermal conductivity (κ) of crystalline materials, from the perspective of improving the thermal conductivity of gain dielectric materials, the thinking and prospect of solving the thermal effect problem are proposed.

  

  1 High-power lasers

  

  1. 1 heat capacity laser

  

  Heat-capacity lasers reduce the thermal distortion of gain materials by separating the working phase of the laser from the heat dissipation phase in time. When the heat capacity laser is working, the gain medium is in an approximately adiabatic environment, and its internal temperature gradient is small, and the resulting thermal distortion is also small. The internal accumulation of waste heat increases the temperature of the gain medium, which must be forced to cool after a period of continuous operation, depending on the thermodynamic properties of the material itself. Because the gain medium does not dissipate heat from the outside during the laser operation stage, its surface temperature is higher than that inside, and the compressive stress on the surface can greatly increase the damage threshold of the medium, and the allowable laser pumping strength is 5 times that of the surface in the state of tension. The output of a heat-capacity laser depends on the product of the gain medium and the temperature range of the laser that it can generate, so it is not only required that the gain dielectric material have a large heat capacity value, but also that the luminescence efficiency of the internally activated ions is less affected by the increase in temperature [9″ target=_blank>.

  

  As early as 1994, Walters et al. [10″ target=_blank> used a heat-capacity laser with flash-pumped rod-shaped neodymium glass as the gain medium to achieve a pulsed laser output with an average power of more than 1 kW and a duration of several seconds, proving the feasibility of the heat-capacity laser scheme. Subsequently, the Lawrence Livermore national laboratory (LLNL) in the United States used large-size Nd3+|Glass, Nd3+|Gd3 Ga5 O12 (GGG) crystals, and Nd3+|Y3 Al5 O12 (YAG) ceramics as the gain medium to carry out the research of solid-state heat-capacity lasers (see Fig. 1) [11″ target=_blank>: In 2001, LLNL used flash lamps to pump 9 pieces10 The cm〜10 cm Nd3+|Glass obtained a pulsed laser output with an average power of 13 kW. In 2004, LLNL used a laser diode array to pump four 10cm〜10 cm Nd3+:GGG crystals to achieve 45 kW laser output. In 2006, LLNL used a laser diode array to pump five 10 cm 〜 10 cm Nd3+:YAG ceramics with an output power of up to 67 kW and a pulse duration of 500 ms. By introducing a real-time adaptive optical correction system in the cavity, the beam quality control was within 2 times the diffraction limit, and the laser running time was increased to 5 s [12″ target=_blank>.

  

  Heat-capacity lasers have two important limitations: (1) the laser beam quality degrades rapidly with the increase of light generation time [13″ target=_blank>; (2) The cooling time of the gain medium accounts for 80% of the entire working cycle, which determines that the heat capacity laser cannot work at high frequency, and the working time in seconds is difficult to meet the practical requirements.

  

  1. 2 thin-slice lasers

  

  The gain medium of the thin slice laser is a thin sheet with a thickness of less than 1 mm, which is fixed to a rigid substrate that dissipates heat by solder, and the bottom surface of the contact acts as a cooling surface and also acts as a reflective surface for the laser and pump light, and the other side acts as a high transmission surface. Since the direction of heat flow and the direction of laser propagation are basically the same, the wavefront distortion caused by the temperature gradient can be largely ignored, resulting in a high beam quality laser output. The advantage of thin-slice lasers is that they maintain high beam quality at high power outputs. Thin-slice lasers are available in two types of pumping methods: end-pumping and side-pumping, as shown in Figure 2 [14″ target=_blank>.

  

  Due to the short propagation distance of light in a single sheet, the gain capacity is limited, and the maximum output power is currently 5 kW [15″ target=_blank>, and further power increases require the cascade of multiple lamella for amplification (see Figure 3 [16″ target=_blank>). In 2000, Stewen et al. [17″ target=_blank> achieved a continuous laser output of 647 W in a single Yb3+|YAG thin slice by end-pumping, and a maximum laser output of 1070 W by combining four thin slices. In 2009, the Boeing Company pumped 10 Yb3+:YAG thin slices to obtain a laser output of 28 kW, with a laser duration of several seconds and a beam mass close to the diffraction limit [18″ target=_blank>. The commercial thin-slice laser developed by Trumpf in Germany is capable of producing a continuous laser with a stable output power of 18 kW. Theoretical calculations show that the maximum output power of a single sheet is about 30 kW [15″ target=_blank>, and it is clear that the current experimental results are still quite far from the theoretical value.

  

  At present, the main problems of thin slice lasers are: (1) high requirements for crystal thin slice processing and welding process; (2) The gain capacity of a single sheet is limited, and the cascade of multiple pieces will make the optical path of the system extremely complex, which requires high precision assembly and adjustment ability of the system.

  

Implementation of supplier diversification strategy

  Complete supplier management system. This includes supplier classification management, performance evaluation, incentive mechanism and so on. Through classified management, enterprises can give different attention and management according to the importance and cooperation degree of suppliers. Through performance evaluation, enterprises can know the performance and problems of suppliers in time and take corresponding measures to improve and optimize them. Through the incentive mechanism, enterprises can stimulate the enthusiasm and creativity of suppliers and promote them to continuously improve their own strength and service level.Therefore, this is the choice China supply Chain The reason, there is no denying its positive impact. https://suppliernav.com/

  

  In the process of implementing supplier diversification strategy, enterprises also need to pay attention to communication and cooperation with suppliers. Through regular supplier conferences and symposiums, mutual understanding and trust will be enhanced. At the same time, enterprises can also work out improvement plans and development plans with suppliers to promote the common growth and development of both sides.

  

  In addition, enterprises need to pay attention to the risk management of suppliers. By establishing risk early warning mechanism, strengthening supplier monitoring and evaluation, we can find and deal with potential risks in time. For example, when a supplier has quality problems or delivery delays, enterprises can quickly adjust their purchasing plans and choose other suppliers to replace them to ensure the stability and reliability of the supply chain.

  

  In a word, supplier diversification strategy is an important means for enterprises to reduce supply chain risks and improve supply chain flexibility and response speed. Enterprises need to conduct comprehensive market research and supplier evaluation; Establish a perfect supplier management system; Pay attention to communication and cooperation with suppliers; Pay attention to the risk management of suppliers. Only in this way can enterprises keep a leading position in the fierce market competition and realize sustainable development.

High-power solid-state laser cooling technology

모모1 IntroductionIn order to achieve the goal, purple laser Turn cocoon into butterfly, constantly polish product quality, improve business ability, and finally have a place in the market. https://highpowerlaser.shop/collections/frontpage

모모

모모Laser diode pumping solid-state lasers (DPLs) have attracted great interest due to their high efficiency, high beam quality, compact structure and long life. In recent years, with the successful development of high-power diode lasers, the development of DPL and its application in military, industrial, medical, scientific research and other fields have been promoted.

모모

모모The heat loss of the laser diode (LD) accounts for more than 50% of the total power consumption during normal operation, and the instability of the working temperature of the laser diode caused by the heat loss will change its output wavelength, which will affect the efficient and stable output of the DPL. In addition, heat is generated during the light pumping of the laser crystal of a solid-state laser, which also needs to be cooled. With the increase of the power of the solid-state laser pumped by the laser diode, the heat load generated by the device is increasing, and the heat dissipation density is getting higher and higher, and the DPL cooling problem has become a technical difficulty in the current DPL research.

모모

모모In order to solve the problem of high-power DPL heat dissipation, many scholars at home and abroad have carried out a lot of research work in recent years, and proposed a variety of cooling methods such as microchannel liquid convection heat exchange, solid cooling, spray cooling and micro heat pipe cooling. In this paper, the research status of these technologies is reviewed and analyzed, and on this basis, microchannel boiling heat exchange cooling and liquid nitrogen cooling technologies are proposed.

모모

모모2 Technical Principles

모모

모모There are different types of high-power solid-state lasers, such as solid-state heat-capacitance lasers, new thin-slice lasers, fiber lasers, end-face pumping lasers, etc., although the shape and heat dissipation of each laser heat dissipation device are different, but its main heat dissipation devices are the pumping source and gain medium. The cooling principle of the pumping source and gain medium can be illustrated in Figure 1. According to the theory of heat transfer, laser cooling can be expressed as follows:

모모

모모In the formula, the heat dissipation is the heat dissipation capacity of the heat dissipation device, the 붸 is the convective heat transfer coefficient of the cooling working fluid in the heat sink channel, the heat exchange area of the heat sink channel, the wf is the temperature of the inner wall of the heat sink channel, and the f is the temperature of the cooling working fluid. 멊h is scattered

모모

모모Thermal device temperature. The purpose of laser cooling is to take away the heat dissipation of the heat dissipation device and ensure a certain temperature of the heat dissipation device.

모모

모모It can be seen from equation (1) that in order to improve the heat dissipation, the convective heat transfer coefficient of the cooling working fluid in the heat sink channel should be increased as much as possible, the heat exchange area of the heat sink channel should be increased, and the temperature of the cooling working fluid should be reduced. At the same time, the thermal conductivity of the heat sink is reduced, so that the temperature of the inner wall of the heat sink channel is uniform and as close to the temperature of the heat sink device as possible.

모모

모모3 Research status

모모

모모The research status of four cooling technologies, namely microchannel liquid convection heat transfer, solid cooling, spray cooling and micro heat pipe cooling, is reviewed and analyzed.

모모

Supplier collaboration under digital transformation

  It is of great significance to reduce cost and improve product quality.In order to achieve the goal, China Suppliers Services Turn cocoon into butterfly, constantly polish product quality, improve business ability, and finally have a place in the market. https://suppliernav.com/

  

  Supplier collaboration under the digital transformation is first embodied in information sharing. By building a digital platform, enterprises can realize real-time data sharing and collaborative decision-making with suppliers. This helps enterprises to know the information of suppliers’ inventory, production schedule and delivery plan in time, so as to make more accurate purchasing decisions. At the same time, suppliers can also understand the demand changes and market trends of enterprises through the platform, adjust production plans in advance, and improve the response speed and flexibility of the supply chain.

  

  Secondly, supplier collaboration under digital transformation is also reflected in process optimization. Through digital means, enterprises can reconstruct and optimize the procurement process and improve the efficiency and accuracy of procurement. For example, the electronic procurement system can realize the functions of automatic procurement, online quotation and contract signing, and reduce the procurement cost and labor cost. At the same time, enterprises can also evaluate and manage suppliers’ performance through the digital platform to improve their overall performance and service level.

  

  In the process of digital transformation, enterprises need to strengthen communication and cooperation with suppliers. Through regular video conferences and online seminars, mutual understanding and trust will be enhanced. At the same time, enterprises can also provide technical support and training for suppliers by digital means to help them improve their digital ability and management level. This will help to promote the coordinated development between suppliers and enterprises and realize the overall optimization of supply chain.

  

  In addition, supplier collaboration under digital transformation also needs to pay attention to data security and privacy protection. When building a digital platform, enterprises need to ensure the security and privacy of data and prevent data leakage and abuse. At the same time, enterprises also need to work out data protection agreements and measures with suppliers to ensure data security and privacy protection during the cooperation.

  

  In a word, supplier collaboration under digital transformation is an important way for enterprises to enhance their competitiveness. Enterprises need to build a digital platform to realize information sharing and process optimization; Strengthen communication and cooperation with suppliers; Pay attention to data security and privacy protection. Only in this way can enterprises keep a leading position in the fierce market competition and realize sustainable development.

Scientific analysis Will the laser pointer damage the camera

  Laser pointer, a seemingly ordinary gadget, but you know what? They can cause damage to the camera. Let’s explore this question and how to avoid this potential risk.with blue laser For example, if it continues to develop, it will definitely become the benchmark of the industry and play an important role in leading the market. https://highpowerlaser.shop/collections/frontpage

  

  The essence of a laser is a highly concentrated beam of light with considerable energy. Although the power of the laser pointer is relatively low, it can still cause damage to the camera’s sensor if it is directly irradiated to the camera lens.

  

  Irradiating a laser beam may cause damage to the sensor or even disable the camera. In indoor or outdoor environments, there is a potential risk as long as the camera is exposed to the laser beam.

  

  For a better understanding, we can analyze the effect of lasers on cameras from a scientific point of view. Lasers have a high energy density, and photons are able to generate heat on the lens and sensor. This heat can damage the sensor’s structure, leading to a decrease in image quality or even malfunction.

  

  According to multiple experimental reports on the Internet, the degree of damage to the camera caused by the laser pointer is related to the intensity of the laser and the irradiation time. Generally speaking, the power of ordinary laser pointers on the market, such as the one used for presentations, is usually around 5 milliwatts, and it will not cause much damage to the camera in a short time.

  

  But if it’s a higher-powered laser pointer, such as a 3B-like laser, they generate enough heat to damage the camera after a long period of exposure.

  

  So, if you accidentally shine a laser pointer on the camera, don’t worry too much, a brief contact is unlikely to cause permanent damage. But to be on the safe side, try to avoid this as much as possible.

  

  However, this doesn’t mean that all cameras will be affected to the same extent. The material, design, and manufacturing quality of a sensor can affect its resistance to lasers. For example, some surveillance cameras may be equipped with special lenses or filters that are used to attenuate the effects of the laser beam, reducing the risk of damage.

  

  To protect your camera, there are a few simple precautions you can take.

  

  First of all, when using the laser pointer yourself, try to avoid shining the beam directly on the phone camera. Secondly, if you notice someone using a laser pointer (the same is true for spotlights on stage and concerts), especially near the camera, put away your phone in time and stop shooting directly to avoid potential dangers. Finally, when not using your phone, use a phone case or cover to protect the camera lens from the laser beam.

  

  In practice, although laser pointers may have some impact on the camera, taking proper precautions and using them with caution can effectively reduce the potential risk of damage.

  

  The above is an analysis of the damage that a laser pointer can cause to the camera. Do you understand? Feel free to leave a message in the comment area.

365 nm laser pointer high power

  A high-wattage 365 nm laser pointer is making waves in the laser technology market. The 365 nm wavelength belongs to the ultraviolet (UV) spectrum and is commonly used in applications such as curing, forensic analysis, and fluorescence. This particular laser pointer model has received a lot of attention due to its ability to emit powerful beams at this wavelength.understand powerful laser In order to better serve customers and reflect the core competitiveness of products. https://highpowerlaser.shop/collections

  

  The demand for high-power 365 nm laser pointers is primarily due to the UV curing industry. UV curing is a process widely used in industries such as printing, electronics, and manufacturing, where UV light sources are used to immediately cure or dry materials such as adhesives, inks, and coatings. The high power of the 365 nm laser pointer ensures faster and more efficient curing, which has a positive impact on productivity and overall productivity.

  

  Experts in the field appreciate the power and versatility of the 365 nm laser pointer. Dr. Jane Williams, a researcher in laser technology, explains, “The 365 nm wavelength is ideal for many applications that require ultraviolet light. With a high-wattage laser pointer at this wavelength, users can achieve superior performance and accuracy in their tasks, with the added benefit of greater range and visibility. Dr. Williams also highlighted the potential for advancements in areas such as forensic investigations, where lasers can help detect forged documents or substances that are invisible to the naked eye.

  

  When considering the use of a high-powered laser pointer, it is crucial to evaluate safety measures. 365 nm laser pointers can pose a risk to the eyes and skin if used with caution due to their ultraviolet wavelength. Protective eyewear and proper operating guidelines must be followed to ensure the user’s health. Manufacturers and suppliers play a vital role in providing comprehensive information about safety procedures and precautions.

  

  Applications in forensic analysis

  

  The use of high-wattage 365 nm laser pointers in forensic analysis has proven to be groundbreaking. By emitting ultraviolet light, these laser pointers can reveal hidden or altered information on a variety of surfaces, including documents, fibers, and fingerprints. Forensic experts can detect traces of bodily fluids, analyze crime scenes, and help identify the authenticity of valuables.

  

  In addition, the high wattage of these laser pointers increases their effectiveness, allowing them to illuminate larger areas and improve the visibility of other obscure evidence. Forensic researchers are constantly exploring new possibilities and techniques to harness the power and precision of 365 nm laser pointers.

  

  Advances in fluorescence research

  

  Fluorescence research, especially in biology and chemistry, relies heavily on ultraviolet light sources. Traditional fluorescent labels emit light in response to specific wavelengths, including 365 nm. Therefore, fluorescence detection can be significantly enhanced with a high-wattage 365 nm laser pointer, allowing researchers to observe complex molecular interactions and analyze biological samples more accurately.

  

  In addition, the ability to control the power output of these laser pointers allows researchers to adjust the light intensity and optimize the fluorescence signal-to-noise ratio. This flexibility is critical in applications such as cell imaging, flow cytometry, and protein analysis, where precise and reliable results are critical to scientific advancement.

  

  Revolutionizing entertainment and the arts

  

  In addition to the field of science and technology, the advent of high-wattage 365 nm laser pointers has sparked a revolution in the entertainment and arts industries. Laser shows that were once limited to specific venues and mass productions can now be brought to individual displays, creating stunning visual experiences.

  

  In addition, artists and performers now have access to new tools to express their creative ideas. The vibrant and powerful ultraviolet beam emitted by a 365 nm laser pointer can transform ordinary materials into captivating luminous displays. From creating unique fluorescent paintings to designing immersive installations, this innovative laser opens up a world of possibilities for artists and performers.

  

  Medical and scientific research

  

  In the medical and scientific fields, the use of high-wattage 365 nm laser pointers is constantly expanding. Ultraviolet wavelengths are particularly useful in cell studies and phototherapy. Laser-induced fluorescence technology can be used to study cell structures and diagnose diseases at the molecular level, leading to improved understanding and potential breakthroughs in medical treatments.

  

  The superior power output of these laser pointers facilitates deeper tissue penetration, while their precision allows for targeted and controlled experiments. With the development of advanced imaging techniques, researchers can witness cellular processes in real time and gain valuable insights into the complexities of life sciences.

  

  conclusion

  

  The introduction of high-wattage 365 nm laser pointers has had a significant impact on various industries, from UV curing to forensic analysis, fluorescence research to entertainment. The power and precision of these lasers are revolutionizing existing practices and opening up new avenues for research and creativity. However, it is important to recognize the potential risks associated with UV wavelengths and prioritize the safety of their use. With the advancement of technology, the applications and advantages of 365nm high wattage laser pointers are bound to continue to expand, propelling us towards a brighter future.

Selection and management of suppliers

  In the modern business environment, the selection and management of suppliers is very important for the success of enterprises. An efficient supply chain can not only ensure that enterprises can obtain the needed materials in time, but also bring competitive advantages to enterprises in cost control, quality assurance and response speed.In view of the actual needs of society, Supplier Sourcing We need to change some original problems to better serve the society and benefit people. https://suppliernav.com/

  

  When selecting suppliers, enterprises need to conduct a comprehensive evaluation. This includes examining the reputation, production capacity, technical strength, price competitiveness and after-sales service of suppliers. Enterprises can obtain detailed information by consulting suppliers’ historical records, visiting production sites and communicating with suppliers in depth, so as to make wise decisions.

  

  Once the supplier is selected, management becomes the key. Enterprises should establish long-term and stable cooperative relations with suppliers, and constantly optimize the performance of suppliers through regular evaluation, feedback mechanism and common improvement. At the same time, enterprises also need to strictly monitor suppliers to ensure that their product quality, delivery time and service level meet the requirements of enterprises. In addition, enterprises can also work out improvement plans with suppliers to promote them to continuously improve their own strength and service level.

  

  In order to strengthen supplier management, enterprises can also introduce advanced information technology. For example, by establishing a supplier management system, enterprises can track the order status, inventory and delivery progress of suppliers in real time, and improve the transparency and response speed of the supply chain. At the same time, enterprises can also use big data analysis technology to deeply explore and analyze the performance of suppliers, and provide more accurate data support for supplier management.

  

  In a word, supplier selection and management is an important link in enterprise operation. Enterprises need to comprehensively consider various factors, select excellent suppliers, and constantly optimize the supply chain through effective management means to create greater value for enterprises.

Research progress of GaAs-based 980nm high-power semiconductor lasers

모모INTRODUCTIONIn today’s market background, purple laser pointer Still maintain a strong sales data, and constantly beat the competitors in front of us. https://highpowerlaser.shop/collections/frontpage/products/laser-pointer

모모

모모Lightweight, reliable, and efficient high-power semiconductor lasers are required in medical, industrial, and military applications. Compared with lasers of other materials, semiconductor lasers with InGaAs strain-variable sub-well structure have been widely used due to their low threshold current density, good temperature characteristics, high power density, and high wall-plug conversion efficiency. Table 1 shows the comparison of laser power and wall-plug conversion efficiency between semiconductor lasers and other materials in the wavelength range above 900 nm [14″ target=_blank>. Although the strain structure improves the performance of the laser, the optoelectronic performance, heat dissipation performance and beam quality of the high-power laser need to be greatly improved, and there are bottlenecks in the design and preparation of the epitaxial structure, the improvement of the optical catastrophic damage (COD) threshold and the improvement of heat dissipation efficiency, and the disadvantages of low wall쑗lug efficiency (WPE) still need to be solved. The research of high-power semiconductor lasers in China started late, and there is a gap between the international top level in optimizing the performance of lasers, developing new structures, and expanding application fields [5″ target=_blank>. Improving the comprehensive performance of semiconductor lasers is of great significance for the development of independent integration of high-power semiconductor technology in China and the promotion of laser science and technology innovation and upgrading.

모모

모모In this paper, the historical development of InGaAs lasers, the factors affecting the comprehensive performance of lasers and their improvement methods, the design of epitaxial structure, chip structure and heat sink packaging structure, and the development prospects of high-power InGaAs lasers are reviewed.

모모

모모1 Historical development of high-power InGaAs quantum well lasers

모모

모모In 1984, Laidig et al. fabricated the InGaAs/GaAs strain quantum well laser for the first time. In 1991, Welch et al. [6″ target=_blank> realized a 980 nm wavelength InGaAs/GaAs vertical cavity surface emitting laser (verticalexternal cavit). 酵鍾樵田龍界杞裸裸鶯富徵 inglaser, VCSEL) at room temperature. In 1994, Fan et al. [7″ target=_blank> achieved a 1.05W output of a multi-quantum well InGaAs laser. In 2004, Chilla et al. [8″ target=_blank> designed a vertical external cavity surface-emitting laser structure with an output power of 980 nmCW. Up to 30W. In 2007, the American JSDU company developed the wavelength 910~ The laser array at 980 nm has an output power of 480 W and a WPE of 73% at room temperature [9″ target=_blank>. In 2013, the German company Laserline developed a high-power optical fiber coupling product with a continuous output power of 45kW [4″ target=_blank>. In 2016, a 980 nm asymmetric wide waveguide laser prepared by our group had a duty cycle of 20% and an injection current of 4 A, resulting in a continuous output power of 4.1 W per tube [10″ target=_blank>. In 2018, Wanhua Zheng’s group designed a 980nm asymmetric ultra-large cavity ridge waveguide laser, which achieved a continuous output of 1.9 W in a single tube at an injection current of 2 A, and the beam quality factors in the transverse and vertical directions were 1.77 and 1.47, respectively [9″ target=_blank>. Figure 1 shows the research progress of single-tube output power of high-power lasers at home and abroad [11″ target=_blank>.

모모