Лазерная очистка новый рубеж в сохранении исторических артефактов

Лазерная технология имеет широкий спектр применения во многих областях, таких как промышленное производство, медицина, военное дело, научные исследования, бизнес, развлечения и т. д. В 1970-х и 1980-х годах лазеры начали использоваться для очистки поверхностей произведений искусства в разных странах. Последующие попытки использовать их для очистки поверхности культурных реликвий от мусора, как правило, в каменных культурных реликвиях с большим количеством. В настоящее время многие страны, такие как Франция, США, Великобритания, Греция, Италия и т. д., использовали лазерную технологию для реставрации культурных реликвий. Лазерный сварочный аппарат

Как работает технология лазерной очистки?

Машина для лазерной очистки это использование высокоэнергетического лазерного луча для облучения поверхности объекта. Поверхностная грязь, пятна ржавчины или покрытия мгновенно испаряются или удаляются. Это приводит к чистому процессу. Лазеры обычно состоят из трех частей: резонатора, генератора света и охладителя.

Принцип работы: лазер излучает монохроматическую сильную, высококонцентрированную энергию и в одном направлении излучаемого света. Затем подключите к лазерной головке через ведущий рычаг резонатора или оптоволоконный кабель и отрегулируйте лазерную головку, чтобы завершить очистку. Поскольку лазер является монохроматическим, а направленное световое излучение очень хорошее. Поэтому можно сфокусировать луч с помощью комбинации зеркал, концентрируя луч в небольшой области или регионе. Правильное управление лазерным лучом покажет эффект очистки.

Как лазеры очищают каменные артефакты?

Поскольку поверхность каменных артефактов, грязи и камня представляет собой комбинацию слабых химических и физических сил. Слабые химические силы включают водородные связи и энергию связи, образованную переносом заряда. Физические силы включают силы Ван-дер-Ваальса (электростатические, индуцированные и дисперсионные эффекты) и капиллярные силы.

Кроме того, камень труднее чистить, чем другие материалы, из-за большого количества микропор, которые существуют в натуральном камне. Капиллярная сила микропористого пространства не только создает различные связи между грязью и камнем, но и силу связи. В то же время его эффект обволакивания также затрудняет участие в различных силах очистки.

Когда лазерный луч попадает на поверхность объекта, он может иметь по крайней мере три эффекта. Во-первых, он будет вызывать явление механического резонанса на твердой поверхности, так что поверхностный слой или конденсат оторвутся. Во-вторых, он заставит поверхностный слой грязи расшириться и преодолеть базовый материал на адсорбции частиц грязи и отделиться от поверхности объекта. В-третьих, в одно мгновение, чтобы молекулы грязи испарились, испарились или разложились.

Лазерный очиститель это использование лазерной импульсной вибрации, теплового расширения частиц, молекулярного фоторазложения или фазового перехода трех ролей. А также совместное действие для преодоления грязи и поверхности материала подложки силы сцепления, так что грязь с поверхности объекта достигает цели очистки.

Полное руководство по использованию лазерного станка CO2 для резки акриловых листов

В современной промышленности лазерная резка стала широко используемой передовой технологией благодаря своей высокой эффективности, точности и гибкости. В частности, CO2-лазер широко используется для обработки неметаллических материалов благодаря широкому спектру применения и превосходной производительности. Использование CO2-лазера для резки акриловых листов — материала, известного своими превосходными оптическими и физическими свойствами, — открывает новые возможности для современного производства. Лазерный сварочный аппарат

laser-cutting-edge-1024×756

Характеристики акрилового листа

Акриловый лист, также известный как полиметилметакрилат (ПММА), является популярным полимерным пластиком. Его предпочитают за отличную прозрачность, простоту обработки и устойчивость к атмосферным воздействиям. Акриловые листы можно обрабатывать различными способами. Однако лазерная резка дает значительные преимущества в плане производительности и контроля качества. Это обусловлено гладким пропилом и отсутствием необходимости во вторичной обработке. CO2-лазеры особенно подходят для резки этого материала. Они позволяют добиться высококачественных результатов резки.

Основной принцип работы лазерного резака для резки акриловых листов

Основной принцип лазерной резки заключается в фокусировке высокоэнергетического лазерного луча на поверхности материала таким образом, что энергия концентрируется в локализованной области, быстро расплавляя или даже испаряя материал. В процессе резки пропил дополняется вспомогательным газом, выдувающим расплавленный материал, в результате чего получается гладкая и точная кромка. Этот вид обработки не только позволяет быстро формовать изделия, но и избежать повреждения материала при традиционной механической обработке.

При обработке акрила качество резки в основном зависит от мощности лазера и скорости резки. Использование высокой мощности, быстрого режима резки позволяет минимизировать зону термического воздействия, обеспечить гладкость пропила и отсутствие скопления расплавленного материала.

Разработка и оптимизация для повышения эффективности обработки

Для повышения эффективности использования и переработки акриловых листов особенно важны дизайн и компоновка. Вот несколько практических стратегий оптимизации:

Дизайн деталей: для необходимости соединения краев деталей, могут быть разработаны вогнуто-выпуклые зазубрины для размещения, при этом увеличивается площадь склеивания для улучшения структурной прочности.

Оптимизация раскладки: Минимизируйте расстояние между деталями, но не допускайте их слишком близкого расположения друг к другу, чтобы избежать увеличения зоны термического воздействия. Для акриловых листов толщиной ≤12 мм рекомендуемое расстояние между деталями составляет 0,25-0,5 толщины листа.

Общее расположение линий: При резке деталей правильной формы (например, прямоугольников или треугольников) общая линейная раскладка позволяет сократить путь резки, сэкономить материал и время обработки.

Выбор параметров обработки

Хорошее качество резки требует разумной настройки мощности лазера и скорости резки. Сочетание высокой мощности и высокой скорости позволяет добиться проникающей резки, избегая при этом локального накопления тепла. На практике сначала установите мощность лазера на максимум, допустимый станком. Затем постепенно снижайте скорость резки для достижения наилучших результатов. Кроме того, при обработке более толстых материалов рекомендуется увеличить диаметр апертуры. Это обеспечит качество и предотвратит плавление от локального нагрева.

Примеры применения: от создания прототипа до реализации проекта

Технология лазерной резки CO2 широко используется в университетских конкурсах и проектах. Используя лазерную резку акриловых листов, студенты могут быстро превратить проектные чертежи в физические прототипы. По сравнению с традиционными методами обработки, такими как точение, фрезерование и сверление, лазерная резка значительно сокращает время обработки и снижает порог обучения. Особенно для начинающих, этот метод прост в эксплуатации, отличается высокой безопасностью и позволяет быстро завершить проверку конструкции.

Например, в университетском конкурсе механиков команда использовала технологию лазерной резки. Они создали прототип с тонкой структурой. В результате многочисленных итераций и оптимизации параметров конечный продукт соответствовал требованиям конкурса. Он также продемонстрировал потенциал эффективной обработки. Если акриловый материал окажется недостаточно прочным для реального использования, его можно будет заменить на металл. Однако этап функциональной проверки прототипа был успешно завершен.

Охрана окружающей среды и устойчивое использование

Обрезки акрила, вырезанные лазером, имеют высокую стоимость повторного использования. Если сортировать и хранить их, а также определять очередность использования кромок в зависимости от цвета и толщины листа, можно не только сэкономить средства, но и сократить количество отходов. В то же время плоское хранение этих материалов позволяет предотвратить деформацию и обеспечить качество вторичной обработки.

Технология лазерной резки CO2 представляет собой эффективное и гибкое решение для обработки акрила. Будь то оптимизация конструкции, улучшение использования материала или упрощение обработки, эта технология имеет большие преимущества. В будущем, с улучшением характеристик оборудования и расширением сферы применения, лазерная резка будет способствовать дальнейшему развитию отрасли обработки неметаллических материалов. Она также откроет новые возможности для машиностроительного производства.

Анализ технологий лазерной очистки различных лазеров

Технология лазерной очистки широко используется в промышленной уборке. Ее популярность объясняется высокой эффективностью, точностью и безопасностью для окружающей среды. Различные типы лазеров, такие как CO2-лазеры, зеленые лазеры, ультрафиолетовые лазеры и волоконные лазеры, обладают уникальными преимуществами. Эти лазеры могут удовлетворить потребности в очистке различных материалов и сценариев применения. Они также способствуют быстрому развитию смежных технологий. Лазерная очистная машина

Лазерная очистка использует высокоэнергетические лазерные лучи для удаления загрязнений с поверхностей и может применяться к широкому спектру материалов. CO2-лазеры подходят для очистки металла и углеродного волокна, зеленые лазеры эффективны на неметаллических поверхностях, УФ-лазеры идеально подходят для хрупких материалов благодаря высокой точности, а волоконные лазеры демонстрируют отличную производительность на металлических поверхностях. Все типы лазеров демонстрируют эффективность и надежность в различных сценариях.

Характеристика и превосходство различных лазеров в технологии лазерной очистки

CO2-лазеры имеют широкий спектр применения в лазерной очистке. Высокая энергия, пригодность для широкого спектра материалов и глубокая очистка делают их идеальными инструментами для промышленного и производственного применения. При очистке металлических поверхностей CO2-лазеры эффективно удаляют окислы и покрытия и улучшают чистоту металлических поверхностей. Кроме того, они также показывают хорошие результаты при очистке неметаллических материалов, таких как углеродное волокно, не повреждая сам материал. В различных областях, включая электронику, автомобилестроение и аэрокосмическую промышленность, широко используются углеродное волокно и композиты на его основе благодаря небольшому весу, высокой жесткости, простоте обработки и формовки, отличной ударопрочности и исключительной долговечности. В связи с этим лазерная очистка CO2 продемонстрировала незаменимые преимущества в промышленной сфере.

Лазерная очистка шин

Лазерная очистка шин

Лазерная очистка от ржавчины

Лазерная очистка от ржавчины

CO2-лазеры отличаются высокой эффективностью и точностью, особенно при очистке металлических поверхностных покрытий и неметаллических покрытий из углеродного волокна. Бесконтактный процесс очистки эффективно защищает целостность материала подложки и позволяет избежать физических повреждений. Кроме того, оптимизируя процесс для различных материалов поверхности и толщины покрытия, CO2-лазер еще больше повышает эффективность и качество очистки.

Лазеры зеленого света имеют преимущества перед CO2-лазерами для очистки некоторых неметаллических материалов и устройств. Умеренная длина волны лазера зеленого света позволяет эффективно удалять смазку, грязь и загрязнения покрытия с электронных устройств, оказывая при этом низкое тепловое воздействие на устройства, что предотвращает их повреждение. В процессе очистки зеленый лазер демонстрирует хорошее поглощение, особенно при удалении грязи и покрытий, что делает работу по очистке более эффективной.

Диапазон длин волн зеленого лазера обеспечивает хорошую видимость. Благодаря этой особенности оператор может четко наблюдать за процессом очистки, что повышает точность работы. Кроме того, низкая энергия зеленого лазера снижает риск потенциального повреждения целевой поверхности. Это делает его особенно подходящим для материалов с высокими требованиями к поверхности. Эффективное и точное управление лазерным лучом обеспечивает идеальный инструмент для микроскопической очистки. В то же время он гарантирует, что материалы на чувствительных поверхностях останутся нетронутыми в процессе очистки.

Ультрафиолетовые лазеры представляют интерес для лазерной очистки благодаря своей короткой длине волны, концентрированной энергии и высокому разрешению. В отличие от других типов лазеров, УФ-лазеры способны напрямую разрушать химические связи между веществами, не вызывая нагрева окружающего пространства, что делает их идеальным инструментом для работы с хрупкими веществами.

Технология очистки ультрафиолетовым лазером показала замечательные результаты в ряде областей. Например, она сохраняет целостность поверхности археологических костей, улучшает качество поверхности картин и эффективно удаляет частицы с кремниевых поверхностей. Ультрафиолетовые лазеры не только эффективно удаляют загрязнения, но и обеспечивают точный контроль над очищаемой областью в процессе очистки, максимально сохраняя целостность поверхности материала. Широкая область применения и уникальные характеристики делают их незаменимыми в тех случаях, когда требуется высокоточная и неразрушающая очистка.

Волоконные лазеры в основном выполняют задачи очистки в диапазоне от 1 060 нм до 1 080 нм. Высокая выходная мощность и плотность энергии делают их особенно эффективными для очистки металлических поверхностей. Они эффективно и надежно обрабатывают большие участки металла или стойкие загрязнения, справляясь с задачами очистки, требующими непрерывной работы в течение длительного времени. Кроме того, благодаря своей гибкости, точному управлению и низкому потреблению энергии волоконные лазеры отлично справляются с очисткой сложных форм и труднодоступных участков. Они также позволяют пользователям точно обрабатывать различные материалы и уровни загрязнения.

Волоконные лазеры продемонстрировали отличную производительность при очистке металлических материалов. Например, процесс очистки не только эффективен, но и сохраняет целостность поверхности материала. Очистка волоконным лазером улучшает микротвердость материала и снижает содержание кислорода, повышая тем самым коррозионную стойкость. Пользователи могут еще больше повысить эффективность очистки и оптимизировать результаты, регулируя параметры лазера. Волоконный лазер способен максимально сохранить качество и целостность поверхности материала, эффективно удаляя загрязнения.

лазерная чистка

лазерная чистка

Резюме

Технология лазерной очистки стала важным инструментом в промышленности и производстве. Это объясняется ее высокой эффективностью, точностью и бесконтактностью. CO2-лазеры обладают высокой энергией и применимы к различным материалам. Зеленые лазеры особенно выгодны для очистки теплочувствительных неметаллических материалов. Ультрафиолетовые лазеры обеспечивают высокое разрешение и неразрушающий эффект. Волоконные лазеры отличаются своей гибкостью и долговечностью при очистке металлических поверхностей. Каждый тип лазера демонстрирует уникальные преимущества в различных сценариях применения.

CO2-лазеры играют важную роль в очистке металла и углеродного волокна. Зеленые лазеры более эффективно справляются с деликатными и термочувствительными задачами очистки. Ультрафиолетовые лазеры защищают хрупкие материалы во время очистки, что делает их широко популярными. Волоконные лазеры справляются со сложными формами и стойкими загрязнениями с удивительной эффективностью и гибкостью.

Выбор подходящего лазера для каждого материала и необходимости позволяет пользователям выполнять задачи по очистке более эффективно. В то же время он защищает целостность материала подложки. Благодаря постоянной оптимизации и развитию технологии лазерная очистка будет играть все более важную роль в различных областях. Она обеспечит более экологичное и надежное решение для промышленной очистки.

Волшебная лазерная гравировка на церемонии открытия зимних Олимпийских игр 2022 года в Пекине

Церемония открытия зимних Олимпийских игр 2022 года в Пекине снова ошеломила мир! На церемонии открытия шокирующие образы завораживали. Лазерная гравировка пяти колец льда и снега — это вся церемония открытия до кульминации. В центре сцены медленно поднимающийся ледяной куб из 24 лазерных гравированных пяти колец льда и снега, висящих в воздухе. В переплетении света и тени это особенно ослепительно. Процесс вырезания ломаного льда означает ледокольное путешествие, но также символизирует дружеские обмены в мире! Лазерная очистная машина

В чем разница между лазером и обычным светом

Лазер, похоже, стал одним из самых модных научных и технологических терминов. На самом деле, лазер назывался не лазером, а радием, его полное название — Усиление света путем вынужденного излучения, что означает Усиление света путем вынужденного излучения.

Прежде чем понять принцип работы лазера, мы, возможно, захотим взглянуть на общий источник света механизма излучения света. Общие источники света, такие как солнечный свет, свет лампы накаливания и т. д., механизм излучения света для спонтанного излучения. Образуется серией частоты, фаз и поляризации различных комбинаций света. Эти светящиеся тела ситуации скачка электронов не одинаковы, темп не постоянен. В случае лазерного источника света механизм излучения света — это возбужденное излучение. В лазере мы сначала возбуждаем большое количество атомов, так что их электроны находятся в возбужденном состоянии. Затем эти атомы возбуждаются фотонами определенной частоты, что высвобождает большое количество фотонов точно такой же частоты и фазы, как и падающие фотоны. Суперпозиция этих идентичных фотонов создает высокоэнергетический лазер.

лазерная гравировка

Итак, каковы преимущества лазеров перед обычным светом Во-первых, лазер имеет хорошую направленность. В отличие от света, излучаемого обычными источниками света, лазеры больше похожи на тонкую прямую линию. Лазерное позиционирование, наведение, измерение дальности и т. д. используют его хорошие характеристики направленности. Во-вторых, монохроматичность лазера хороша. Измерительная работа стандартного источника света, лазерная связь и т. д. неотделимы от него. В-третьих, яркость лазера высока. Его энергия высоко сконцентрирована, и он может производить очень высокую температуру на очень маленькой площади. Лазерная резка, лазерная гравировка, лазерное оружие, лазерно-индуцированная спектроскопия пробоя и т. д. являются использованием его высоких характеристик яркости.

Почему лазерная гравировка быстрая и точная

Лазерная гравировка и обычная гравировка очень похожи, но лазерная гравировка — это лазер как резной нож. При гравировке лазерный гравировальный станок будет светить прямо на заготовку, так что температура материала мгновенно увеличится до очень высокой. Такая высокая температура заставит точку лазерного облучения на очень маленькой площади материала мгновенно расплавиться или даже испариться, что позволит вырезать следы на заготовке.

Кроме того, в большинстве лазерных гравировальных машин также добавлено устройство продувки, в процессе гравировки, постоянно к точке лазерного облучения впрыска газа. Струйный газ может не только удалять с резьбы пыль и шлак, но и может играть роль в охлаждении. Таким образом, чтобы уменьшить деревянные изделия, кожаные изделия, изделия из ткани и другие материалы из-за высокой температуры, создаваемой поверхностной карбонизацией, так что материал сохраняет первоначальный цвет, для достижения превосходных результатов гравировки.

Перед гравировкой, пока предварительно разработанный рисунок передается на компьютер. Механическое устройство, управляемое компьютером, приводит в движение лазерную головку, чтобы она двигалась по обработанным деталям, он может гравировать на обработанных деталях красиво разработанные узоры.

Волшебная лазерная гравировка на церемонии открытия зимних Олимпийских игр 2022 года в Пекине

Церемония открытия зимних Олимпийских игр 2022 года в Пекине снова ошеломила мир! На церемонии открытия шокирующие образы завораживали. Лазерная гравировка пяти колец льда и снега — это вся церемония открытия до кульминации. В центре сцены медленно поднимающийся ледяной куб из 24 лазерных гравированных пяти колец льда и снега, висящих в воздухе. В переплетении света и тени это особенно ослепительно. Процесс вырезания ломаного льда означает ледокольное путешествие, но также символизирует дружеские обмены в мире! Лазерная маркировочная машина

В чем разница между лазером и обычным светом

Лазер, похоже, стал одним из самых модных научных и технологических терминов. На самом деле, лазер назывался не лазером, а радием, его полное название — Усиление света путем вынужденного излучения, что означает Усиление света путем вынужденного излучения.

Прежде чем понять принцип работы лазера, мы, возможно, захотим взглянуть на общий источник света механизма излучения света. Общие источники света, такие как солнечный свет, свет лампы накаливания и т. д., механизм излучения света для спонтанного излучения. Образуется серией частоты, фаз и поляризации различных комбинаций света. Эти светящиеся тела ситуации скачка электронов не одинаковы, темп не постоянен. В случае лазерного источника света механизм излучения света — это возбужденное излучение. В лазере мы сначала возбуждаем большое количество атомов, так что их электроны находятся в возбужденном состоянии. Затем эти атомы возбуждаются фотонами определенной частоты, что высвобождает большое количество фотонов точно такой же частоты и фазы, как и падающие фотоны. Суперпозиция этих идентичных фотонов создает высокоэнергетический лазер.

лазерная гравировка

Итак, каковы преимущества лазеров перед обычным светом Во-первых, лазер имеет хорошую направленность. В отличие от света, излучаемого обычными источниками света, лазеры больше похожи на тонкую прямую линию. Лазерное позиционирование, наведение, измерение дальности и т. д. используют его хорошие характеристики направленности. Во-вторых, монохроматичность лазера хороша. Измерительная работа стандартного источника света, лазерная связь и т. д. неотделимы от него. В-третьих, яркость лазера высока. Его энергия высоко сконцентрирована, и он может производить очень высокую температуру на очень маленькой площади. Лазерная резка, лазерная гравировка, лазерное оружие, лазерно-индуцированная спектроскопия пробоя и т. д. являются использованием его высоких характеристик яркости.

Почему лазерная гравировка быстрая и точная

Лазерная гравировка и обычная гравировка очень похожи, но лазерная гравировка — это лазер как резной нож. При гравировке лазерный гравировальный станок будет светить прямо на заготовку, так что температура материала мгновенно увеличится до очень высокой. Такая высокая температура заставит точку лазерного облучения на очень маленькой площади материала мгновенно расплавиться или даже испариться, что позволит вырезать следы на заготовке.

Кроме того, в большинстве лазерных гравировальных машин также добавлено устройство продувки, в процессе гравировки, постоянно к точке лазерного облучения впрыска газа. Струйный газ может не только удалять с резьбы пыль и шлак, но и может играть роль в охлаждении. Таким образом, чтобы уменьшить деревянные изделия, кожаные изделия, изделия из ткани и другие материалы из-за высокой температуры, создаваемой поверхностной карбонизацией, так что материал сохраняет первоначальный цвет, для достижения превосходных результатов гравировки.

Перед гравировкой, пока предварительно разработанный рисунок передается на компьютер. Механическое устройство, управляемое компьютером, приводит в движение лазерную головку, чтобы она двигалась по обработанным деталям, он может гравировать на обработанных деталях красиво разработанные узоры.

Лазерная робототехника в автомобилестроении Главный двигатель автомобильной промышленности

В последние годы быстрое развитие лазерной технологии, возникающее с роботом гибкой муфты волоконно-оптической передачи мощных промышленных лазеров. Передовое производство в области интеллекта, автоматизации и информационных технологий продолжает прогрессировать, чтобы способствовать объединению робототехники и лазерной технологии. В частности, потребности развития автомобильной промышленности, обусловленные формированием и развитием отрасли робототехники лазерной обработки. Лазерный сварочный аппарат

1.Роботизированная лазерная сварка

Автомобильная промышленность является крупнейшим промышленным применением роботов лазерной обработки. В современном автомобилестроении роботизированная сварка является важным процессом сварки на линии производства автомобилей. В последние годы, с быстрым развитием технологии лазерной сварки. Многие производители автомобилей по всему миру начали использовать на сборочных линиях роботизированную лазерную сварку вместо традиционной технологии точечной сварки для сварки кузова и деталей.

В середине 1990-х годов BMW использовала лазерного робота для выполнения первой сварки в седане BMW 5 серии общей длиной 12 м. К июлю 2003 года общая длина швов, выполненных лазерной сваркой, достигла 1500 км. Volkswagen в Германии использовал 1400 соединений, выполненных лазерной сваркой в ??седане Touran общей длиной 70 м. Крыши Audi A6, Golf A4, Passat и т. д. полностью сварены лазером. Audi A6, Golf A4, Passat и другие бренды используют лазерную сварку на крыше. General Motors также использует лазерную сварку на верхней части рамы.

По сравнению с традиционными методами сварки лазерная сварка имеет много уникальных преимуществ. Скорость лазерной сварки, до 20 м/мин; сварочная деформация очень мала, высокая точность сварки; сварные соединения высокого металлургического качества, улучшают усталостную прочность кузова, ударопрочность, коррозионную стойкость, степень стали кузова увеличивается более чем на 30%; улучшают герметизацию кузова, снижают шум на 30%; односторонняя сварка, сварные соединения, размер маленький, небольшие сварочные кромки зарезервированы. Поэтому лазерная сварка не только значительно повышает эффективность производства автомобилей, качество производства и безопасность кузова. Более того, она облегчает вес всего автомобиля и снижает стоимость производства автомобилей. Кроме того, она относится к бесконтактной сварке, гибкому производству, дизайну кузова более современной концепции.

2.Роботизированная лазерная резка

Из всех лазерных обработок технология лазерной роботизированной резки является самой ранней, использованной в зарубежном автомобилестроении. Volkswagen, General Motors, Mercedes-Benz и Nissan установили большое количество лазерных режущих роботов на своих линиях по производству автомобилей для резки частей кузова, чтобы удовлетворить многообразные и гуманизированные требования заказчика.

3.Роботизированная лазерная термическая обработка

Для решения задач производства автомобилей в режиме онлайн или на месте несколько компаний в последние годы разработали роботов для лазерной термообработки и успешно применяют их в автомобильной промышленности. Германия Erlaser робот для лазерной термообработки для широкополосной лазерной закалки больших автомобильных форм. Использование полупроводниковых лазеров с шириной одиночной закалки 20 мм. SAIC-GM-Wuling Automobile Co., Ltd. и Liuzhou Cole digital manufacturing technology limited company также использовали эту технологию. Результаты показывают, что срок службы формы удвоился, а качество продукции значительно улучшилось, и, следовательно, производительность значительно возросла.

Анализ технологий лазерной очистки различных лазеров

Технология лазерной очистки широко используется в промышленной уборке. Ее популярность объясняется высокой эффективностью, точностью и безопасностью для окружающей среды. Различные типы лазеров, такие как CO2-лазеры, зеленые лазеры, ультрафиолетовые лазеры и волоконные лазеры, обладают уникальными преимуществами. Эти лазеры могут удовлетворить потребности в очистке различных материалов и сценариев применения. Они также способствуют быстрому развитию смежных технологий. Промышленное роботизированное лазерное решение

Лазерная очистка использует высокоэнергетические лазерные лучи для удаления загрязнений с поверхностей и может применяться к широкому спектру материалов. CO2-лазеры подходят для очистки металла и углеродного волокна, зеленые лазеры эффективны на неметаллических поверхностях, УФ-лазеры идеально подходят для хрупких материалов благодаря высокой точности, а волоконные лазеры демонстрируют отличную производительность на металлических поверхностях. Все типы лазеров демонстрируют эффективность и надежность в различных сценариях.

Характеристика и превосходство различных лазеров в технологии лазерной очистки

CO2-лазеры имеют широкий спектр применения в лазерной очистке. Высокая энергия, пригодность для широкого спектра материалов и глубокая очистка делают их идеальными инструментами для промышленного и производственного применения. При очистке металлических поверхностей CO2-лазеры эффективно удаляют окислы и покрытия и улучшают чистоту металлических поверхностей. Кроме того, они также показывают хорошие результаты при очистке неметаллических материалов, таких как углеродное волокно, не повреждая сам материал. В различных областях, включая электронику, автомобилестроение и аэрокосмическую промышленность, широко используются углеродное волокно и композиты на его основе благодаря небольшому весу, высокой жесткости, простоте обработки и формовки, отличной ударопрочности и исключительной долговечности. В связи с этим лазерная очистка CO2 продемонстрировала незаменимые преимущества в промышленной сфере.

Лазерная очистка шин

Лазерная очистка шин

Лазерная очистка от ржавчины

Лазерная очистка от ржавчины

CO2-лазеры отличаются высокой эффективностью и точностью, особенно при очистке металлических поверхностных покрытий и неметаллических покрытий из углеродного волокна. Бесконтактный процесс очистки эффективно защищает целостность материала подложки и позволяет избежать физических повреждений. Кроме того, оптимизируя процесс для различных материалов поверхности и толщины покрытия, CO2-лазер еще больше повышает эффективность и качество очистки.

Лазеры зеленого света имеют преимущества перед CO2-лазерами для очистки некоторых неметаллических материалов и устройств. Умеренная длина волны лазера зеленого света позволяет эффективно удалять смазку, грязь и загрязнения покрытия с электронных устройств, оказывая при этом низкое тепловое воздействие на устройства, что предотвращает их повреждение. В процессе очистки зеленый лазер демонстрирует хорошее поглощение, особенно при удалении грязи и покрытий, что делает работу по очистке более эффективной.

Диапазон длин волн зеленого лазера обеспечивает хорошую видимость. Благодаря этой особенности оператор может четко наблюдать за процессом очистки, что повышает точность работы. Кроме того, низкая энергия зеленого лазера снижает риск потенциального повреждения целевой поверхности. Это делает его особенно подходящим для материалов с высокими требованиями к поверхности. Эффективное и точное управление лазерным лучом обеспечивает идеальный инструмент для микроскопической очистки. В то же время он гарантирует, что материалы на чувствительных поверхностях останутся нетронутыми в процессе очистки.

Ультрафиолетовые лазеры представляют интерес для лазерной очистки благодаря своей короткой длине волны, концентрированной энергии и высокому разрешению. В отличие от других типов лазеров, УФ-лазеры способны напрямую разрушать химические связи между веществами, не вызывая нагрева окружающего пространства, что делает их идеальным инструментом для работы с хрупкими веществами.

Технология очистки ультрафиолетовым лазером показала замечательные результаты в ряде областей. Например, она сохраняет целостность поверхности археологических костей, улучшает качество поверхности картин и эффективно удаляет частицы с кремниевых поверхностей. Ультрафиолетовые лазеры не только эффективно удаляют загрязнения, но и обеспечивают точный контроль над очищаемой областью в процессе очистки, максимально сохраняя целостность поверхности материала. Широкая область применения и уникальные характеристики делают их незаменимыми в тех случаях, когда требуется высокоточная и неразрушающая очистка.

Волоконные лазеры в основном выполняют задачи очистки в диапазоне от 1 060 нм до 1 080 нм. Высокая выходная мощность и плотность энергии делают их особенно эффективными для очистки металлических поверхностей. Они эффективно и надежно обрабатывают большие участки металла или стойкие загрязнения, справляясь с задачами очистки, требующими непрерывной работы в течение длительного времени. Кроме того, благодаря своей гибкости, точному управлению и низкому потреблению энергии волоконные лазеры отлично справляются с очисткой сложных форм и труднодоступных участков. Они также позволяют пользователям точно обрабатывать различные материалы и уровни загрязнения.

Волоконные лазеры продемонстрировали отличную производительность при очистке металлических материалов. Например, процесс очистки не только эффективен, но и сохраняет целостность поверхности материала. Очистка волоконным лазером улучшает микротвердость материала и снижает содержание кислорода, повышая тем самым коррозионную стойкость. Пользователи могут еще больше повысить эффективность очистки и оптимизировать результаты, регулируя параметры лазера. Волоконный лазер способен максимально сохранить качество и целостность поверхности материала, эффективно удаляя загрязнения.

лазерная чистка

лазерная чистка

Резюме

Технология лазерной очистки стала важным инструментом в промышленности и производстве. Это объясняется ее высокой эффективностью, точностью и бесконтактностью. CO2-лазеры обладают высокой энергией и применимы к различным материалам. Зеленые лазеры особенно выгодны для очистки теплочувствительных неметаллических материалов. Ультрафиолетовые лазеры обеспечивают высокое разрешение и неразрушающий эффект. Волоконные лазеры отличаются своей гибкостью и долговечностью при очистке металлических поверхностей. Каждый тип лазера демонстрирует уникальные преимущества в различных сценариях применения.

CO2-лазеры играют важную роль в очистке металла и углеродного волокна. Зеленые лазеры более эффективно справляются с деликатными и термочувствительными задачами очистки. Ультрафиолетовые лазеры защищают хрупкие материалы во время очистки, что делает их широко популярными. Волоконные лазеры справляются со сложными формами и стойкими загрязнениями с удивительной эффективностью и гибкостью.

Выбор подходящего лазера для каждого материала и необходимости позволяет пользователям выполнять задачи по очистке более эффективно. В то же время он защищает целостность материала подложки. Благодаря постоянной оптимизации и развитию технологии лазерная очистка будет играть все более важную роль в различных областях. Она обеспечит более экологичное и надежное решение для промышленной очистки.

Волшебная лазерная гравировка на церемонии открытия зимних Олимпийских игр 2022 года в Пекине

Церемония открытия зимних Олимпийских игр 2022 года в Пекине снова ошеломила мир! На церемонии открытия шокирующие образы завораживали. Лазерная гравировка пяти колец льда и снега — это вся церемония открытия до кульминации. В центре сцены медленно поднимающийся ледяной куб из 24 лазерных гравированных пяти колец льда и снега, висящих в воздухе. В переплетении света и тени это особенно ослепительно. Процесс вырезания ломаного льда означает ледокольное путешествие, но также символизирует дружеские обмены в мире! Лазерная очистная машина

В чем разница между лазером и обычным светом

Лазер, похоже, стал одним из самых модных научных и технологических терминов. На самом деле, лазер назывался не лазером, а радием, его полное название — Усиление света путем вынужденного излучения, что означает Усиление света путем вынужденного излучения.

Прежде чем понять принцип работы лазера, мы, возможно, захотим взглянуть на общий источник света механизма излучения света. Общие источники света, такие как солнечный свет, свет лампы накаливания и т. д., механизм излучения света для спонтанного излучения. Образуется серией частоты, фаз и поляризации различных комбинаций света. Эти светящиеся тела ситуации скачка электронов не одинаковы, темп не постоянен. В случае лазерного источника света механизм излучения света — это возбужденное излучение. В лазере мы сначала возбуждаем большое количество атомов, так что их электроны находятся в возбужденном состоянии. Затем эти атомы возбуждаются фотонами определенной частоты, что высвобождает большое количество фотонов точно такой же частоты и фазы, как и падающие фотоны. Суперпозиция этих идентичных фотонов создает высокоэнергетический лазер.

лазерная гравировка

Итак, каковы преимущества лазеров перед обычным светом Во-первых, лазер имеет хорошую направленность. В отличие от света, излучаемого обычными источниками света, лазеры больше похожи на тонкую прямую линию. Лазерное позиционирование, наведение, измерение дальности и т. д. используют его хорошие характеристики направленности. Во-вторых, монохроматичность лазера хороша. Измерительная работа стандартного источника света, лазерная связь и т. д. неотделимы от него. В-третьих, яркость лазера высока. Его энергия высоко сконцентрирована, и он может производить очень высокую температуру на очень маленькой площади. Лазерная резка, лазерная гравировка, лазерное оружие, лазерно-индуцированная спектроскопия пробоя и т. д. являются использованием его высоких характеристик яркости.

Почему лазерная гравировка быстрая и точная

Лазерная гравировка и обычная гравировка очень похожи, но лазерная гравировка — это лазер как резной нож. При гравировке лазерный гравировальный станок будет светить прямо на заготовку, так что температура материала мгновенно увеличится до очень высокой. Такая высокая температура заставит точку лазерного облучения на очень маленькой площади материала мгновенно расплавиться или даже испариться, что позволит вырезать следы на заготовке.

Кроме того, в большинстве лазерных гравировальных машин также добавлено устройство продувки, в процессе гравировки, постоянно к точке лазерного облучения впрыска газа. Струйный газ может не только удалять с резьбы пыль и шлак, но и может играть роль в охлаждении. Таким образом, чтобы уменьшить деревянные изделия, кожаные изделия, изделия из ткани и другие материалы из-за высокой температуры, создаваемой поверхностной карбонизацией, так что материал сохраняет первоначальный цвет, для достижения превосходных результатов гравировки.

Перед гравировкой, пока предварительно разработанный рисунок передается на компьютер. Механическое устройство, управляемое компьютером, приводит в движение лазерную головку, чтобы она двигалась по обработанным деталям, он может гравировать на обработанных деталях красиво разработанные узоры.

Могут ли лазеры производить одежду Шутка

В области текстиля и одежды традиционные текстильные и швейные технологии хороши. Но в массовом производстве не могут удовлетворить потребности людей. С развитием лазерных технологий и компьютерного дизайна в области текстиля и одежды появилось большое разнообразие производственных технологий. Такие как лазерная обрезка и резка, лазерная гравировка, лазерная сварка, лазерное тестирование и так далее. Промышленное роботизированное лазерное решение

Адаптивность лазерной технологии

Текстильная и швейная области обработки материалов делятся на чистую кожу, овчину, шерсть, хлопок и лен, шелк, пряжу и химические волокна и так далее семь видов. По сравнению с металлическим материалом с точки зрения материалов одежды они менее разнообразны, технология лазерной обработки проста в применении и продвижении.

Технология лазерной обработки при обработке текстильных тканей имеет преимущества гибкой и удобной эксплуатации, быстроты и эффективности. Суть лазерной обработки заключается в том, чтобы иметь высокоэнергетический лазер, проецируемый на поверхность заготовки для текстильного материала для обработки. Текстильный материал в области, подлежащей обработке, претерпевает физические или химические изменения для достижения цели обработки. Существует три основных фактора, которые влияют на результаты, достигаемые на текстиле после лазерной обработки. Тип текстильного волокна, толщина пряжи, организация текстиля и параметры обработки. В этой статье представлены и обобщены вышеуказанные технологии лазерной обработки и дан обзор их состояния развития.

Лазерная обрезка и резка

Лазерная обрезка похожа на лазерную резку тем, что принцип заключается в использовании лазерного светового излучения высокой плотности энергии на текстильном сырье. Мгновенная генерируемая энергия заставит обработанный материал расплавиться или испариться за очень короткое время. По сравнению с традиционным процессом резки одежды, бесконтактная резка текстильных материалов лазером имеет возможность решить проблему деформации материала, высокую точность и скорость обработки. Отсутствие последующей обработки и отсутствие заусенцев при резке и другие преимущества. Большая часть современной технологии лазерной резки использует автоматизированное проектирование для реализации автоматизации. В автоматизированных инструментах для задания формы резки можно обрабатывать требуемые продукты, в области текстиля и одежды имеет лучшие перспективы для развития.

Традиционная резка ткани, сжигание или выдалбливание, необходимо сначала открыть форму ножа, а затем разрезать. Если она не соответствует требованиям, необходимо отрегулировать форму ножа, но высокая стоимость цикла производства формы ножа длительна. Станок для лазерной резки имеет очевидные преимущества по сравнению с традиционными процессами. Например, для полиэфирных или полиамидных тканей с высоким содержанием лазерная резка и резка могут сделать такие ткани срезанными краями слегка расплавленными. Это создает эффект автоматической фиксации кромки с высокой точностью и значительно повышает производительность.

Лазерная гравировка

Развитие автоматизированного проектирования, чтобы автоматизировать лазерную обработку, появилась автоматизированная лазерная гравировка. Для лазерной гравировки нужно только ввести модельный шаблон для вырезания и параметры обработки в компьютер, вы можете быстро обрабатывать, чтобы получить требуемые продукты. Технология лазерной гравировки в лазерной скелетной гравировке и лазерной технологии травления. Ее основными преимуществами являются: гибкость обработки и отсутствие ограничений формы ткани, меньшие потери ткани, отсутствие деформации, сильная приспособляемость к ткани одежды. В то же время лазерная технология по требованиям к оператору очень низкая. Только короткий период обучения может быть использован, в значительной степени, чтобы избежать возникновения несчастных случаев ручной неправильной резки.

Технология лазерной гравировки широко используется в текстиле и одежде. По сравнению с традиционным процессом вышивки повышает эффективность производства и экономит человеческие ресурсы. В частности, лазер выжигает и травит ткань без контакта и может вырезать и формировать выпуклые и вогнутые цветочные узоры. Он также может выполнять микропористую обработку на кожаных материалах, что значительно улучшает воздухопроницаемость и долговечность кожаных материалов. Это то, что не может произойти при традиционных процессах, но может легко произойти при лазерной гравировке.

Лазерная сварка

Лазерная сварка появилась в промышленности, в основном для сварки металлов с целью улучшения свойств заготовок. В текстильной и швейной промышленности она находит свое основное применение в процессе шитья между тканями одежды. Принцип технологии лазерной сварки заключается в использовании определенного способа, чтобы заставить материал возбуждать фотоны излучения. Излучаемый луч создает большое количество энергии. Во время контакта с тканью одежды материал поглощает материал, поскольку его температура повышается до точки плавления. Впоследствии материал склеивается.

Лазерный сварочный аппарат для текстильных и швейных применений отличается низкой стоимостью, высокой скоростью обработки и низким потреблением тепла. Тип и размер ткани, а также положение сварки можно легко выбрать. Глубина области сварки и температура сварки фактически могут контролироваться, а сваренные ткани не имеют разлетающихся кромок. Чтобы добиться хорошего эффекта сварки во время процесса сварки. В зависимости от типа и толщины материала необходимо выбрать соответствующие параметры лазера и сварки, а затем выбрать соответствующий поглотитель. Существующая технология лазерной сварки уже применяется для изготовления водонепроницаемых костюмов и 3D-капюшонов.

Лазерный контроль

Качество одежды является важным показателем того, является ли поверхность изделия плоской, есть ли очевидные дефекты. Для крупносерийного производства одежды ручной контроль слишком расточителен с точки зрения рабочей силы и ресурсов. Технология лазерного контроля появилась для решения этой важной проблемы контроля одежды. Лазерный контроль — это использование лазерных сканирующих устройств для испускания лазера, проецируемого на проверяемый продукт. Полученные изображения отправляются в компьютерную систему обработки, где компьютер обрабатывает информацию для получения результатов.

Лазерный контроль может значительно повысить эффективность производства одежды. Однако текущие исследования лазерного контроля в основном сосредоточены на численных вычислениях, в то время как применение алгоритмов обработки изображений к исследованиям лазерного контроля меньше. И текущий алгоритм распознавания изображений, применяемый к одежде, недостаточно развит.

Лазерная робототехника в автомобилестроении Главный двигатель автомобильной промышленности

В последние годы быстрое развитие лазерной технологии, возникающее с роботом гибкой муфты волоконно-оптической передачи мощных промышленных лазеров. Передовое производство в области интеллекта, автоматизации и информационных технологий продолжает прогрессировать, чтобы способствовать объединению робототехники и лазерной технологии. В частности, потребности развития автомобильной промышленности, обусловленные формированием и развитием отрасли робототехники лазерной обработки. Промышленное роботизированное лазерное решение

1.Роботизированная лазерная сварка

Автомобильная промышленность является крупнейшим промышленным применением роботов лазерной обработки. В современном автомобилестроении роботизированная сварка является важным процессом сварки на линии производства автомобилей. В последние годы, с быстрым развитием технологии лазерной сварки. Многие производители автомобилей по всему миру начали использовать на сборочных линиях роботизированную лазерную сварку вместо традиционной технологии точечной сварки для сварки кузова и деталей.

В середине 1990-х годов BMW использовала лазерного робота для выполнения первой сварки в седане BMW 5 серии общей длиной 12 м. К июлю 2003 года общая длина швов, выполненных лазерной сваркой, достигла 1500 км. Volkswagen в Германии использовал 1400 соединений, выполненных лазерной сваркой в ??седане Touran общей длиной 70 м. Крыши Audi A6, Golf A4, Passat и т. д. полностью сварены лазером. Audi A6, Golf A4, Passat и другие бренды используют лазерную сварку на крыше. General Motors также использует лазерную сварку на верхней части рамы.

По сравнению с традиционными методами сварки лазерная сварка имеет много уникальных преимуществ. Скорость лазерной сварки, до 20 м/мин; сварочная деформация очень мала, высокая точность сварки; сварные соединения высокого металлургического качества, улучшают усталостную прочность кузова, ударопрочность, коррозионную стойкость, степень стали кузова увеличивается более чем на 30%; улучшают герметизацию кузова, снижают шум на 30%; односторонняя сварка, сварные соединения, размер маленький, небольшие сварочные кромки зарезервированы. Поэтому лазерная сварка не только значительно повышает эффективность производства автомобилей, качество производства и безопасность кузова. Более того, она облегчает вес всего автомобиля и снижает стоимость производства автомобилей. Кроме того, она относится к бесконтактной сварке, гибкому производству, дизайну кузова более современной концепции.

2.Роботизированная лазерная резка

Из всех лазерных обработок технология лазерной роботизированной резки является самой ранней, использованной в зарубежном автомобилестроении. Volkswagen, General Motors, Mercedes-Benz и Nissan установили большое количество лазерных режущих роботов на своих линиях по производству автомобилей для резки частей кузова, чтобы удовлетворить многообразные и гуманизированные требования заказчика.

3.Роботизированная лазерная термическая обработка

Для решения задач производства автомобилей в режиме онлайн или на месте несколько компаний в последние годы разработали роботов для лазерной термообработки и успешно применяют их в автомобильной промышленности. Германия Erlaser робот для лазерной термообработки для широкополосной лазерной закалки больших автомобильных форм. Использование полупроводниковых лазеров с шириной одиночной закалки 20 мм. SAIC-GM-Wuling Automobile Co., Ltd. и Liuzhou Cole digital manufacturing technology limited company также использовали эту технологию. Результаты показывают, что срок службы формы удвоился, а качество продукции значительно улучшилось, и, следовательно, производительность значительно возросла.